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Abstract

A new definition of a binary representation of a multistate monotone structure function is formulated, and
its main properties are presented. Several forms of the binary representation and its factoring are discussed.
Applicability of the results is illustrated by an example.

1. Introduction

Although the theory of binary systems has many practical applications, it is being replaced by the theory
of multistate systems (MSS). In fact, many modern systems (and their elements as well) are capable of
assuming a whole range of performance levels, varying from perfect functioning to complete failure. The
present state-of-art of the theory and practice of MSS may be found in Lisnianski and Levitin (2003).
Reliability analysis of MSS is difficult, therefore some effort has been made in applying existing binary
methods to MSS. In particular, Block and Savits (1982) introduced two binary representations of MSS,
decomposing a multistate structure into a sequence of binary structures. Similar decompositions were
considered in Butler (1982) and Natvig (1982).

In this paper a new definition of a binary representation of an MSS is formulated and its main
properties are obtained. The definition is given in terms of conditions to be satisfied, whereas the
definition proposed by Block and Savits (1982) is given by a closed-form formula. Several forms of the
binary representation are discussed. Problem of variables’ relevance is also addressed. Furthermore, two
different types of factoring of binary representations are introduced, which can be used to simplify the
corresponding binary structures. Finally, the application of the binary representation to the calculation of
the reliability indices is illustrated by an example.

2. Basic definitions

Let <C, K, Kj, ..., K,, 0> be a multistate system consisting of » multistate elements with the index set C =
{1, 2, ..., n}, where K = {0, 1, ..., M} is the set of the system states, K;= {0, 1, ..., M,} is the set of the
states of element ieC, and ¢: V — K is the system structure function, where V = KixKjx...xK,, is the
space of element state vectors. The state of the system is determined by the element state vector and the
structure function: ¢(x) is the system state when the element state vector is x.

We assume that the states of the system [element i] represent successive levels of performance
ranging from the perfect functioning level M [M;] down to the complete failure level 0, i.e. the state
spaces of the system and its elements are totally ordered. The system is a multistate monotone system
(MMYS) if its structure function ¢ is non-decreasing in each argument, ¢(0)=0 and ¢(M)=M, where
0=(0,...,0), M = (M,,...,M,). A vector y = (J1,...,,) € V is said to be a path vector to level j of an MMS
iff o(y) >J. It is called a minimal path vector to level j if in addition x <y implies @(x) <j. where x <y
means x; < y; for i=1,...,n, and x; < y; for some i. The set of all minimal path vectors to level j is denoted by



U;, where U, = {0}. A vector z = (y,...,y,) € V is said to be a cut vector to level j of an MMS iff o(y) <j.
It is called a minimal cut vector to level j if in addition z < x implies @(x) > /. The set of all minimal cut
vectors to level j is denoted by L;, where L = &. The dual structure 9" is given by ¢”(x) = M — p(M—x).

3. Binary representation of an MMS and its properties

Let J.(x;) = I(x; > r), x,eK,, ieC, reK—{0}, where /(-) is the indicator function. Define vector-valued
functions J, : K, — {0, 1}* =F, (ieC)and J: V — {0, 1}"" x...x {0, """ =F = F, x... xF, :

Ji(x) = (L3 (%) o0 S i, () 5 IX) = (J10x1), oo Tul(x)) = (ir(x): 1€ C, reKi={0}). (1

Elements of the set F; are denoted as vectors with single underlying: x, = (x,,,X,,,..,X;,,, ), Where

x;€10, 1}. Elements of the set F are denoted as vectors with double underlying: X = (X, ..., X,) =

{xi,}. Let A =J(K)) c F;and A=J(V)=A, x ... x A, c F. We have:
A= AX, =00 X Xy ) 12X, 2 X, 2002x,, 20} = {e,(r):reK,}, (2)

where e,(r) =((a<r):a=1, .., M)=J(r). Hence J(x) = (e,(x,):i€C).

Definition. Let ¢;: F — R, jeK—{0}, be real functions of binary variables X = {x;,}. We say that {¢;} is
a binary representation of an MMS ¢ if VxeV VjeK—{0}: I(¢(x) >j) = ¢(J(x)).

From the definition and properties of ¢ and J it follows that:
(a) {@;} are non-trivial binary monotone functions on A.

®1z2p12@>...20y=0o0nA.

(©) VxeV o) = "7 0,(J(x)).

(d) A binary representation is determined uniquely on A, i.e. if {¢;} and {y;} are two binary
representations of an MMS, then @; = y; on A for each je K—{0}.

(e) Let {¢;}, j/=1,...,.M, be pseudo-boolean functions defined on F. If {¢,} satisfy (a) and (b), then @(x) =

,,,,,

(f) A binary representation {(pf } of the dual structure @” can be obtained from a binary representation
{o;} of ¢ as follows: (1) obtain the pseudo-dual functions (p?l({x,.;r}) =1-¢,({l-x.}); (2) obtain
functions {(p_‘f2 }, by replacing each x, . with X, _ ., in algebraic expressions defining functions {(p‘;1 };

(B)set 07 = ¢4, 7 =1, ... M.

The function ¢, may be written in several forms equivalent on A, but not necessarily on F—A. Some
of these forms are direct generalizations of the forms known from the binary system theory. The algebraic
expression defining the function ¢; may be treated as in the binary system theory, using techniques and
tools known from this theory. Moreover, due to the restrictions on x;,- imposed by (2), we may use several
additional simplification rules which do not alter the function ¢; on the set A. The most important rules
are:

Xy Xig = Xp AXp =X X VX =X X, X, =X, —X 3)

iroviss ismax(r,s) > ismin(r,s) ° Lrovis i i;min(r,s)



where, as usual, anb = min(a, b) = ab, avb = max(a, b) = atb—ab and a = 1 — a) for any binary a and b.
Block and Savits (1982) defined binary representations using so-called, min-path and min-cut forms:

(MP) — (MC)
X max min x X min max X, 4
(P ( ) yeU; ieC:y;>0 vi? (p ( ) zeL; ieC: z;<M,; Bzl ( )

By applying the inclusion-exclusion principle to (4) and then the first rule of (3) to each term, we

obtain the so-called Poincaré’s form:
U]

‘P,(/P)(é) - Z (-pP Hxi;uw) :Z( n* Z Hxluw)’ )

@#DcU; ieC:u;(D)>0 DcU;:p|=k i€C:u;(D)>0

where for any & =D c U;, u(D)=max{x; xeD}, ieC,
Among many other forms, there is a pseudo-polynomial form:

(PP)(X) = (X’O +ZOL B (X) Bk(é) = Hxi;ak,i)_ci§bk,i A H('xt 3y ; - tb, 4 (6)

ieC ieC

where oy are integer coefﬁc1ents 0 < ay; < by; < M1 for all i and k, =5 means equality on A, x;o = 1,
X =1=X,,, = 1, and the products By are non-trivial. Observe that J™'(B;'(1)) = [as, be—1] is a
multidimensional interval in V, where a; = (ax1,...,ar,) and by = (bi1,...,0r,). Two product B,(x) and
B,(x) are orthogonal, if B, (x)B,(x) =0 on A, i.e. when the corresponding intervals are disjoint. If in (6),

any two products are disjoint, oo = 0 and o, = 1 (k=1,...,m), then (6) called the orthogonal form, or SDP
form. A particular case of the orthogonal form is the canonical disjunctive normal form, in which the
products correspond to single-point intervals.

We say that variable x;, is relevant for the function ¢; if there exists x € A such that (0,,,X)€A,
(1-X) €A and ¢,(0,,,,X) # ¢,(1,),X), or equivalently, if there exists x € A such that ¢ (e, (r),Xx)
# ¢ (e, (r—1),x), where (e,(r),X)=(X,....e,(r),....X ). The functions {¢;} may have many irrelevant

variables. However in many practical cases, the algebraic expressions defining these functions contain
relevant variables only. For example, all variables in the expressions shown (4) and (5) are relevant.
Moreover, it can be shown that the set of relevant variables for ¢; is:

{relevant variables of ¢;} = {x,, :i€C, y,>0,yeU,} ={x,_,:ieCz, <M, zeL,}. (7)
The factoring is a popular technique for analyzing complex binary systems. There are two kinds of
factoring (pivotal decompositions) of the function @;: with respect to the entire vector x; €A, (or the state
of element i), and with respect to a single variable x;,. Considering all possible values of vector x; €A,

we obtain the factoring formula with respect to the state of element i:
¢,(x) = ZKII (x, =€,(1)9,(e,(r).x) = ZK:x,-;rf,-;m 0,(e,(r).x) = ZK:(x,-;r ~ X)) (e,(r).X)  (8)

for x eA.
_The factoring with respect to a single variable x;,. is given by:
(Pj(é) = X (Pj(l(i;r)’é) + )_Ci;r (Pj(o(i;r)’é)

=2 0,0 =2, 0, (1 1S5 7),X) + 5, 0,0, :r <5< M,).x). ©)
The second equality follows from the fact that on A, the condition x;,, = 1 means x;; = 1 for all 1<s<r, and

the condition x;, = 0 means x;; = 0 for all »<s<M,. It can be seen that recursive application of (9) with
respect to X, , ..., X;; successively, leads to (8).



4. Example of application

Suppose that the states of elements 1, ..., n of an MMS are represented by s-independent random variables
X, ..., X,. Then the state of the MMS is ¢(X), where X = (X}, ..., X,). It is clear that for any fixed i€ C the
random variables X, = J;.,(X;), reK—{0} are s-dependent, as X;,>X;, for r<s. However, the random
vectors (X, : reK;—{0}), ..., (X, : reK,—{0}) are s-independent. Let R(j) = Pr{p(X) >/} = E[o(J(X))]
be the system reliability to the level j and R,(r) = Pr{X;>r} = E[X,,] be the reliability to the level » of
element i. Assuming that {R(r)} are known, and that the function ¢; is given in the form (6), the
calculation of R(j) is very easy:

R() = E[of"(I(X))] = a, +ia‘kE[Bk IX)], EB,IX)] = [T (R(a,) =R (b)), (10)

k=1 ieC
where clearly R,(0) = 1 and R(M+1) = 0. It is seen that the choice of a suitable binary representation of an
MMS overcomes difficulties with dependence of random variables belonging to the same element.

Example. Consider an MMS with K= {0, 1, 2, 3}, K; = K, = {0, 1, 2}, K; = {0, 1, 2, 3}. The structure ¢
is defined by the sets of minimal path vectors: U; = {(1,2,1), (2,1,1), (0,1,2), (1,0,2), (0,0,3)}, U, =
{(1,1,2), (0,1,3), (1,0,3)} and U; = {(1,2,3), (2,1,3)}. We demonstrate the use of the factoring of ¢, with
respect to element 3. According (4):

D1 (X) = Xy Xp0 %5y V XppXp Xy V X X3 V Xy Xy V Xy (11)
We have:
?,(€5(0),X) = x;;x,, 0V x5, 0V x,, 0 v x,, 0V 0 =0, (12)
(P1(§3(1),§) = XX IV XX, 1V X, 0vix 0V 0 = X ,x,, + X, ('x2;1 - xz;z) > (13)
@1(93(2),§) = XX VX v, Ivix Iv0o =x, + - xl;l)x2;1 > (14)
@1(93(3),§) = XXl vixx Ivie,, vy vl = 1. (15)
Thus, by (8)
(Pl(é) = (o3 = X3 [ X0, + X5 (X5 — X5 )]+ (X35 = x3)[x +(L=2x)x, ] + X35 (16)
Finally,
R(1) = E[0:(J(X)] = (R;(1) = Ry 2[R, (DR,(2) + R, (2)(R,(1) — R,(2))]
T (R;(2) - R,A))[R, (D + (1= R,(1)R, (1] + R, (3). (17)
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